Abstract:Context is an important factor in computer vision as it offers valuable information to clarify and analyze visual data. Utilizing the contextual information inherent in an image or a video can improve the precision and effectiveness of object detectors. For example, where recognizing an isolated object might be challenging, context information can improve comprehension of the scene. This study explores the impact of various context-based approaches to object detection. Initially, we investigate the role of context in object detection and survey it from several perspectives. We then review and discuss the most recent context-based object detection approaches and compare them. Finally, we conclude by addressing research questions and identifying gaps for further studies. More than 265 publications are included in this survey, covering different aspects of context in different categories of object detection, including general object detection, video object detection, small object detection, camouflaged object detection, zero-shot, one-shot, and few-shot object detection. This literature review presents a comprehensive overview of the latest advancements in context-based object detection, providing valuable contributions such as a thorough understanding of contextual information and effective methods for integrating various context types into object detection, thus benefiting researchers.
Abstract:To train well-performing generalizing neural networks, sufficiently large and diverse datasets are needed. Collecting data while adhering to privacy legislation becomes increasingly difficult and annotating these large datasets is both a resource-heavy and time-consuming task. An approach to overcome these difficulties is to use synthetic data since it is inherently scalable and can be automatically annotated. However, how training on synthetic data affects the layers of a neural network is still unclear. In this paper, we train the YOLOv3 object detector on real and synthetic images from city environments. We perform a similarity analysis using Centered Kernel Alignment (CKA) to explore the effects of training on synthetic data on a layer-wise basis. The analysis captures the architecture of the detector while showing both different and similar patterns between different models. With this similarity analysis we want to give insights on how training synthetic data affects each layer and to give a better understanding of the inner workings of complex neural networks. The results show that the largest similarity between a detector trained on real data and a detector trained on synthetic data was in the early layers, and the largest difference was in the head part. The results also show that no major difference in performance or similarity could be seen between frozen and unfrozen backbone.