Abstract:Reinforcement learning (RL) is a promising approach for optimizing HVAC control. RL offers a framework for improving system performance, reducing energy consumption, and enhancing cost efficiency. We benchmark two popular classical and deep RL methods (Q-Learning and Deep-Q-Networks) across multiple HVAC environments and explore the practical consideration of model hyper-parameter selection and reward tuning. The findings provide insight for configuring RL agents in HVAC systems, promoting energy-efficient and cost-effective operation.