Abstract:The ability to efficiently predict adsorption properties of zeolites can be of large benefit in accelerating the design process of novel materials. The existing configuration space for these materials is wide, while existing molecular simulation methods are computationally expensive. In this work, we propose a model which is 4 to 5 orders of magnitude faster at adsorption properties compared to molecular simulations. To validate the model, we generated datasets containing various aluminium configurations for the MOR, MFI, RHO and ITW zeolites along with their heat of adsorptions and Henry coefficients for CO$_2$, obtained from Monte Carlo simulations. The predictions obtained from the Machine Learning model are in agreement with the values obtained from the Monte Carlo simulations, confirming that the model can be used for property prediction. Furthermore, we show that the model can be used for identifying adsorption sites. Finally, we evaluate the capability of our model for generating novel zeolite configurations by using it in combination with a genetic algorithm.
Abstract:Micro RNAs (miRNA) are a type of non-coding RNA, which are involved in gene regulation and can be associated with diseases such as cancer, cardiovascular and neurological diseases. As such, identifying the entire genome of miRNA can be of great relevance. Since experimental methods for novel precursor miRNA (pre-miRNA) detection are complex and expensive, computational detection using ML could be useful. Existing ML methods are often complex black boxes, which do not create an interpretable structural description of pre-miRNA. In this paper, we propose a novel framework, which makes use of generative modeling through Variational Auto-Encoders to uncover the generative factors of pre-miRNA. After training the VAE, the pre-miRNA description is developed using a decision tree on the lower dimensional latent space. Applying the framework to miRNA classification, we obtain a high reconstruction and classification performance, while also developing an accurate miRNA description.
Abstract:Efficiently predicting properties of porous crystalline materials has great potential to accelerate the high throughput screening process for developing new materials, as simulations carried out using first principles model are often computationally expensive. To effectively make use of Deep Learning methods to model these materials, we need to utilize the symmetries present in the crystals, which are defined by their space group. Existing methods for crystal property prediction either have symmetry constraints that are too restrictive or only incorporate symmetries between unit cells. In addition, these models do not explicitly model the porous structure of the crystal. In this paper, we develop a model which incorporates the symmetries of the unit cell of a crystal in its architecture and explicitly models the porous structure. We evaluate our model by predicting the heat of adsorption of CO$_2$ for different configurations of the mordenite zeolite. Our results confirm that our method performs better than existing methods for crystal property prediction and that the inclusion of pores results in a more efficient model.