Abstract:Syllables play an important role in speech synthesis, speech recognition, and spoken document retrieval. A novel, low cost, and language agnostic approach to dividing words into their corresponding syllables is presented. A hybrid genetic algorithm constructs a categorization of phones optimized for syllabification. This categorization is used on top of a hidden Markov model sequence classifier to find syllable boundaries. The technique shows promising preliminary results when trained and tested on English words.