Abstract:Automation of support ticket classification is crucial to improve customer support performance and shortening resolution time for customer inquiries. This research aims to test the applicability of automated machine learning (AutoML) as a technology to train a machine learning model (ML model) that can classify support tickets. The model evaluation conducted in this research shows that AutoML can be used to train ML models with good classification performance. Moreover, this paper fills a research gap by providing new insights into developing AI solutions without a dedicated professional by utilizing AutoML, which makes this technology more accessible for companies without specialized AI departments and staff.
Abstract:This paper evaluates No-Code AutoML as a solution for challenges in AI product prototyping, characterized by unpredictability and inaccessibility to non-experts, and proposes a conceptual framework. This complexity of AI products hinders seamless execution and interdisciplinary collaboration crucial for human-centered AI products. Relevant to industry and innovation, it affects strategic decision-making and investment risk mitigation. Current approaches provide limited insights into the potential and feasibility of AI product ideas. Employing Design Science Research, the study identifies challenges and integrates no-code AutoML as a solution by presenting a framework for AI product prototyping with No-code AutoML. A case study confirms its potential in supporting non-experts, offering a structured approach to AI product development. The framework facilitates accessible and interpretable prototyping, benefiting academia, managers, and decision-makers. Strategic integration of no-code AutoML enhances efficiency, empowers non-experts, and informs early-stage decisions, albeit with acknowledged limitations.