Abstract:The European Moon Rover System (EMRS) Pre-Phase A activity is part of the European Exploration Envelope Programme (E3P) that seeks to develop a versatile surface mobility solution for future lunar missions. These missions include: the Polar Explorer (PE), In-Situ Resource Utilization (ISRU), and Astrophysics Lunar Observatory (ALO) and Lunar Geological Exploration Mission (LGEM). Therefore, designing a multipurpose rover that can serve these missions is crucial. The rover needs to be compatible with three different mission scenarios, each with an independent payload, making flexibility the key driver. This study focuses on modularity in the rover's locomotion solution and autonomous on-board system. Moreover, the proposed EMRS solution has been tested at an analogue facility to prove the modular mobility concept. The tests involved the rover's mobility in a lunar soil simulant testbed and different locomotion modes in a rocky and uneven terrain, as well as robustness against obstacles and excavation of lunar regolith. As a result, the EMRS project has developed a multipurpose modular rover concept, with power, thermal control, insulation, and dust protection systems designed for further phases. This paper highlights the potential of the EMRS system for lunar exploration and the importance of modularity in rover design.