Abstract:Multi-Objective Recommender Systems (MORSs) emerged as a paradigm to guarantee multiple (often conflicting) goals. Besides accuracy, a MORS can operate at the global level, where additional beyond-accuracy goals are met for the system as a whole, or at the individual level, meaning that the recommendations are tailored to the needs of each user. The state-of-the-art MORSs either operate at the global or individual level, without assuming the co-existence of the two perspectives. In this study, we show that when global and individual objectives co-exist, MORSs are not able to meet both types of goals. To overcome this issue, we present an approach that regulates the recommendation lists so as to guarantee both global and individual perspectives, while preserving its effectiveness. Specifically, as individual perspective, we tackle genre calibration and, as global perspective, provider fairness. We validate our approach on two real-world datasets, publicly released with this paper.
Abstract:Early stopping techniques can be utilized to decrease the time cost, however currently the ultimate goal of early stopping techniques is closely related to the accuracy upgrade or the ability of the neural network to generalize better on unseen data without being large or complex in structure and not directly with its efficiency. Time efficiency is a critical factor in neural networks, especially when dealing with the segmentation of 3D point cloud data, not only because a neural network itself is computationally expensive, but also because point clouds are large and noisy data, making learning processes even more costly. In this paper, we propose a new early stopping technique based on fundamental mathematics aiming to upgrade the trade-off between the learning efficiency and accuracy of neural networks dealing with 3D point clouds. Our results show that by employing our early stopping technique in four distinct and highly utilized neural networks in segmenting 3D point clouds, the training time efficiency of the models is greatly improved, with efficiency gain values reaching up to 94\%, while the models achieving in just a few epochs approximately similar segmentation accuracy metric values like the ones that are obtained in the training of the neural networks in 200 epochs. Also, our proposal outperforms four conventional early stopping approaches in segmentation accuracy, implying a promising innovative early stopping technique in point cloud segmentation.
Abstract:Rockfall detection is a crucial procedure in the field of geology, which helps to reduce the associated risks. Currently, geologists identify rockfall events almost manually utilizing point cloud and imagery data obtained from different caption devices such as Terrestrial Laser Scanner or digital cameras. Multi-temporal comparison of the point clouds obtained with these techniques requires a tedious visual inspection to identify rockfall events which implies inaccuracies that depend on several factors such as human expertise and the sensibility of the sensors. This paper addresses this issue and provides an intelligent framework for rockfall event detection for any individual working in the intersection of the geology domain and decision support systems. The development of such an analysis framework poses significant research challenges and justifies intensive experimental analysis. In particular, we propose an intelligent system that utilizes multiple machine learning algorithms to detect rockfall clusters of point cloud data. Due to the extremely imbalanced nature of the problem, a plethora of state-of-the-art resampling techniques accompanied by multiple models and feature selection procedures are being investigated. Various machine learning pipeline combinations have been benchmarked and compared applying well-known metrics to be incorporated into our system. Specifically, we developed statistical and machine learning techniques and applied them to analyze point cloud data extracted from Terrestrial Laser Scanner in two distinct case studies, involving different geological contexts: the basaltic cliff of Castellfollit de la Roca and the conglomerate Montserrat Massif, both located in Spain. Our experimental data suggest that some of the above-mentioned machine learning pipelines can be utilized to detect rockfall incidents on mountain walls, with experimentally proven accuracy.