Abstract:We propose a novel change-point detection method based on online Dynamic Mode Decomposition with control (ODMDwC). Leveraging ODMDwC's ability to find and track linear approximation of a non-linear system while incorporating control effects, the proposed method dynamically adapts to its changing behavior due to aging and seasonality. This approach enables the detection of changes in spatial, temporal, and spectral patterns, providing a robust solution that preserves correspondence between the score and the extent of change in the system dynamics. We formulate a truncated version of ODMDwC and utilize higher-order time-delay embeddings to mitigate noise and extract broad-band features. Our method addresses the challenges faced in industrial settings where safety-critical systems generate non-uniform data streams while requiring timely and accurate change-point detection to protect profit and life. Our results demonstrate that this method yields intuitive and improved detection results compared to the Singular-Value-Decomposition-based method. We validate our approach using synthetic and real-world data, showing its competitiveness to other approaches on complex systems' benchmark datasets. Provided guidelines for hyperparameters selection enhance our method's practical applicability.
Abstract:This paper presents the Real-time Adaptive and Interpretable Detection (RAID) algorithm. The novel approach addresses the limitations of state-of-the-art anomaly detection methods for multivariate dynamic processes, which are restricted to detecting anomalies within the scope of the model training conditions. The RAID algorithm adapts to non-stationary effects such as data drift and change points that may not be accounted for during model development, resulting in prolonged service life. A dynamic model based on joint probability distribution handles anomalous behavior detection in a system and the root cause isolation based on adaptive process limits. RAID algorithm does not require changes to existing process automation infrastructures, making it highly deployable across different domains. Two case studies involving real dynamic system data demonstrate the benefits of the RAID algorithm, including change point adaptation, root cause isolation, and improved detection accuracy.
Abstract:Anomaly detection methods are part of the systems where rare events may endanger an operation's profitability, safety, and environmental aspects. Although many state-of-the-art anomaly detection methods were developed to date, their deployment is limited to the operation conditions present during the model training. Online anomaly detection brings the capability to adapt to data drifts and change points that may not be represented during model development resulting in prolonged service life. This paper proposes an online anomaly detection algorithm for existing real-time infrastructures where low-latency detection is required and novel patterns in data occur unpredictably. The online inverse cumulative distribution-based approach is introduced to eliminate common problems of offline anomaly detectors, meanwhile providing dynamic process limits to normal operation. The benefit of the proposed method is the ease of use, fast computation, and deployability as shown in two case studies of real microgrid operation data.