Abstract:Utilizing deep learning models to learn part-based representations holds significant potential for interpretable-by-design approaches, as these models incorporate latent causes obtained from feature representations through simple addition. However, training a part-based learning model presents challenges, particularly in enforcing non-negative constraints on the model's parameters, which can result in training difficulties such as instability and convergence issues. Moreover, applying such approaches in Deep Reinforcement Learning (RL) is even more demanding due to the inherent instabilities that impact many optimization methods. In this paper, we propose a non-negative training approach for actor models in RL, enabling the extraction of part-based representations that enhance interpretability while adhering to non-negative constraints. To this end, we employ a non-negative initialization technique, as well as a modified sign-preserving training method, which can ensure better gradient flow compared to existing approaches. We demonstrate the effectiveness of the proposed approach using the well-known Cartpole benchmark.
Abstract:Neuromorphic photonic accelerators are becoming increasingly popular, since they can significantly improve computation speed and energy efficiency, leading to femtojoule per MAC efficiency. However, deploying existing DL models on such platforms is not trivial, since a great range of photonic neural network architectures relies on incoherent setups and power addition operational schemes that cannot natively represent negative quantities. This results in additional hardware complexity that increases cost and reduces energy efficiency. To overcome this, we can train non-negative neural networks and potentially exploit the full range of incoherent neuromorphic photonic capabilities. However, existing approaches cannot achieve the same level of accuracy as their regular counterparts, due to training difficulties, as also recent evidence suggests. To this end, we introduce a methodology to obtain the non-negative isomorphic equivalents of regular neural networks that meet requirements of neuromorphic hardware, overcoming the aforementioned limitations. Furthermore, we also introduce a sign-preserving optimization approach that enables training of such isomorphic networks in a non-negative manner.
Abstract:Even nowadays, where Deep Learning (DL) has achieved state-of-the-art performance in a wide range of research domains, accelerating training and building robust DL models remains a challenging task. To this end, generations of researchers have pursued to develop robust methods for training DL architectures that can be less sensitive to weight distributions, model architectures and loss landscapes. However, such methods are limited to adaptive learning rate optimizers, initialization schemes, and clipping gradients without investigating the fundamental rule of parameters update. Although multiplicative updates have contributed significantly to the early development of machine learning and hold strong theoretical claims, to best of our knowledge, this is the first work that investigate them in context of DL training acceleration and robustness. In this work, we propose an optimization framework that fits to a wide range of optimization algorithms and enables one to apply alternative update rules. To this end, we propose a novel multiplicative update rule and we extend their capabilities by combining it with a traditional additive update term, under a novel hybrid update method. We claim that the proposed framework accelerates training, while leading to more robust models in contrast to traditionally used additive update rule and we experimentally demonstrate their effectiveness in a wide range of task and optimization methods. Such tasks ranging from convex and non-convex optimization to difficult image classification benchmarks applying a wide range of traditionally used optimization methods and Deep Neural Network (DNN) architectures.