Abstract:It is a challenging problem that solving the \textit{multivariate linear model} (MLM) $\mathbf{A}\mathbf{x}=\mathbf{b}$ with the $\ell_1 $-norm approximation method such that $||\mathbf{A}\mathbf{x}-\mathbf{b}||_1$, the $\ell_1$-norm of the \textit{residual error vector} (REV), is minimized. In this work, our contributions lie in two aspects: firstly, the equivalence theorem for the structure of the $\ell_1$-norm optimal solution to the MLM is proposed and proved; secondly, a unified algorithmic framework for solving the MLM with $\ell_1$-norm optimization is proposed and six novel algorithms (L1-GPRS, L1-TNIPM, L1-HP, L1-IST, L1-ADM, L1-POB) are designed. There are three significant characteristics in the algorithms discussed: they are implemented with simple matrix operations which do not depend on specific optimization solvers; they are described with algorithmic pseudo-codes and implemented with Python and Octave/MATLAB which means easy usage; and the high accuracy and efficiency of our six new algorithms can be achieved successfully in the scenarios with different levels of data redundancy. We hope that the unified theoretic and algorithmic framework with source code released on GitHub could motivate the applications of the $\ell_1$-norm optimization for parameter estimation of MLM arising in science, technology, engineering, mathematics, economics, and so on.