Abstract:The connections within many real-world networks change over time. Thus, there has been a recent boom in studying temporal graphs. Recognizing patterns in temporal graphs requires a similarity measure to compare different temporal graphs. To this end, we initiate the study of dynamic time warping (an established concept for mining time series data) on temporal graphs. We propose the dynamic temporal graph warping distance (dtgw) to determine the (dis-)similarity of two temporal graphs. Our novel measure is flexible and can be applied in various application domains. We show that computing the dtgw-distance is a challenging (NP-hard) optimization problem and identify some polynomial-time solvable special cases. Moreover, we develop a quadratic programming formulation and an efficient heuristic. Preliminary experiments indicate that the heuristic performs very well and that our concept yields meaningful results on real-world instances.