Abstract:Detecting and handling misspecified objectives, such as reward functions, has been widely recognized as one of the central challenges within the domain of Artificial Intelligence (AI) safety research. However, even with the recognition of the importance of this problem, we are unaware of any works that attempt to provide a clear definition for what constitutes (a) misspecified objectives and (b) successfully resolving such misspecifications. In this work, we use the theory of mind, i.e., the human user's beliefs about the AI agent, as a basis to develop a formal explanatory framework called Expectation Alignment (EAL) to understand the objective misspecification and its causes. Our \EAL\ framework not only acts as an explanatory framework for existing works but also provides us with concrete insights into the limitations of existing methods to handle reward misspecification and novel solution strategies. We use these insights to propose a new interactive algorithm that uses the specified reward to infer potential user expectations about the system behavior. We show how one can efficiently implement this algorithm by mapping the inference problem into linear programs. We evaluate our method on a set of standard Markov Decision Process (MDP) benchmarks.
Abstract:Value alignment problems arise in scenarios where the specified objectives of an AI agent don't match the true underlying objective of its users. The problem has been widely argued to be one of the central safety problems in AI. Unfortunately, most existing works in value alignment tend to focus on issues that are primarily related to the fact that reward functions are an unintuitive mechanism to specify objectives. However, the complexity of the objective specification mechanism is just one of many reasons why the user may have misspecified their objective. A foundational cause for misalignment that is being overlooked by these works is the inherent asymmetry in human expectations about the agent's behavior and the behavior generated by the agent for the specified objective. To address this lacuna, we propose a novel formulation for the value alignment problem, named goal alignment that focuses on a few central challenges related to value alignment. In doing so, we bridge the currently disparate research areas of value alignment and human-aware planning. Additionally, we propose a first-of-its-kind interactive algorithm that is capable of using information generated under incorrect beliefs about the agent, to determine the true underlying goal of the user.