Abstract:With the increasing capabilities of LLMs, recent studies focus on understanding whose opinions are represented by them and how to effectively extract aligned opinion distributions. We conducted an empirical analysis of three straightforward methods for obtaining distributions and evaluated the results across a variety of metrics. Our findings suggest that sampling and log-probability approaches with simple parameter adjustments can return better aligned outputs in subjective tasks compared to direct prompting. Yet, assuming models reflect human opinions may be limiting, highlighting the need for further research on how human subjectivity affects model uncertainty.
Abstract:Large Language Models (LLMs) have emerged as powerful support tools across various natural language tasks and a range of application domains. Recent studies focus on exploring their capabilities for data annotation. This paper provides a comparative overview of twelve studies investigating the potential of LLMs in labelling data. While the models demonstrate promising cost and time-saving benefits, there exist considerable limitations, such as representativeness, bias, sensitivity to prompt variations and English language preference. Leveraging insights from these studies, our empirical analysis further examines the alignment between human and GPT-generated opinion distributions across four subjective datasets. In contrast to the studies examining representation, our methodology directly obtains the opinion distribution from GPT. Our analysis thereby supports the minority of studies that are considering diverse perspectives when evaluating data annotation tasks and highlights the need for further research in this direction.