Abstract:Federated learning (FL), a novel branch of distributed machine learning (ML), develops global models through a private procedure without direct access to local datasets. However, it is still possible to access the model updates (gradient updates of deep neural networks) transferred between clients and servers, potentially revealing sensitive local information to adversaries using model inversion attacks. Differential privacy (DP) offers a promising approach to addressing this issue by adding noise to the parameters. On the other hand, heterogeneities in data structure, storage, communication, and computational capabilities of devices can cause convergence problems and delays in developing the global model. A personalized weighted averaging of local parameters based on the resources of each device can yield a better aggregated model in each round. In this paper, to efficiently preserve privacy, we propose a personalized DP framework that injects noise based on clients' relative impact factors and aggregates parameters while considering heterogeneities and adjusting properties. To fulfill the DP requirements, we first analyze the convergence boundary of the FL algorithm when impact factors are personalized and fixed throughout the learning process. We then further study the convergence property considering time-varying (adaptive) impact factors.
Abstract:Federated learning (FL) as one of the novel branches of distributed machine learning (ML), develops global models through a private procedure without direct access to local datasets. However, access to model updates (e.g. gradient updates in deep neural networks) transferred between clients and servers can reveal sensitive information to adversaries. Differential privacy (DP) offers a framework that gives a privacy guarantee by adding certain amounts of noise to parameters. This approach, although being effective in terms of privacy, adversely affects model performance due to noise involvement. Hence, it is always needed to find a balance between noise injection and the sacrificed accuracy. To address this challenge, we propose adaptive noise addition in FL which decides the value of injected noise based on features' relative importance. Here, we first propose two effective methods for prioritizing features in deep neural network models and then perturb models' weights based on this information. Specifically, we try to figure out whether the idea of adding more noise to less important parameters and less noise to more important parameters can effectively save the model accuracy while preserving privacy. Our experiments confirm this statement under some conditions. The amount of noise injected, the proportion of parameters involved, and the number of global iterations can significantly change the output. While a careful choice of parameters by considering the properties of datasets can improve privacy without intense loss of accuracy, a bad choice can make the model performance worse.