Abstract:This paper introduces Opus, a novel framework for generating and optimizing Workflows tailored to complex Business Process Outsourcing (BPO) use cases, focusing on cost reduction and quality enhancement while adhering to established industry processes and operational constraints. Our approach generates executable Workflows from Intention, defined as the alignment of Client Input, Client Output, and Process Context. These Workflows are represented as Directed Acyclic Graphs (DAGs), with nodes as Tasks consisting of sequences of executable Instructions, including tools and human expert reviews. We adopt a two-phase methodology: Workflow Generation and Workflow Optimization. In the Generation phase, Workflows are generated using a Large Work Model (LWM) informed by a Work Knowledge Graph (WKG) that encodes domain-specific procedural and operational knowledge. In the Optimization phase, Workflows are transformed into Workflow Graphs (WFGs), where optimal Workflows are determined through path optimization. Our experiments demonstrate that state-of-the-art Large Language Models (LLMs) face challenges in reliably retrieving detailed process data as well as generating industry-compliant workflows. The key contributions of this paper include: - The integration of a Work Knowledge Graph (WKG) into a Large Work Model (LWM), enabling the generation of context-aware, semantically aligned, structured and auditable Workflows. - A two-phase approach that combines Workflow Generation from Intention with graph-based Workflow Optimization. - Opus Alpha 1 Large and Opus Alpha 1 Small, models that outperform state-of-the-art LLMs by 38\% and 29\% respectively in Workflow Generation for a Medical Coding use case.
Abstract:This paper presents an extensive empirical study on the integration of dimensionality reduction techniques with advanced unsupervised time series anomaly detection models, focusing on the MUTANT and Anomaly-Transformer models. The study involves a comprehensive evaluation across three different datasets: MSL, SMAP, and SWaT. Each dataset poses unique challenges, allowing for a robust assessment of the models' capabilities in varied contexts. The dimensionality reduction techniques examined include PCA, UMAP, Random Projection, and t-SNE, each offering distinct advantages in simplifying high-dimensional data. Our findings reveal that dimensionality reduction not only aids in reducing computational complexity but also significantly enhances anomaly detection performance in certain scenarios. Moreover, a remarkable reduction in training times was observed, with reductions by approximately 300\% and 650\% when dimensionality was halved and minimized to the lowest dimensions, respectively. This efficiency gain underscores the dual benefit of dimensionality reduction in both performance enhancement and operational efficiency. The MUTANT model exhibits notable adaptability, especially with UMAP reduction, while the Anomaly-Transformer demonstrates versatility across various reduction techniques. These insights provide a deeper understanding of the synergistic effects of dimensionality reduction and anomaly detection, contributing valuable perspectives to the field of time series analysis. The study underscores the importance of selecting appropriate dimensionality reduction strategies based on specific model requirements and dataset characteristics, paving the way for more efficient, accurate, and scalable solutions in anomaly detection.