Abstract:Next-generation mobile networks require evolved radio access network (RAN) architectures to meet the demands of high capacity, massive connectivity, reduced costs, and energy efficiency, and to realize communication with ultra-low latency and ultra-high reliability. {Meeting such} requirements for both mobile users and vertical industries in the next decade {requires novel solutions. One of the potential solutions that attracted significant research attention in the past 15 years} is to redesign the radio access network (RAN). In this survey, we present a comprehensive survey on distributed antenna system (DAS) architectures that address these challenges and improve network performance. We cover the transition from traditional decentralized RAN to DAS, including cloud radio-access networks (C-RAN), fog radio-access networks (F-RAN), virtualized radio-access networks (V-RAN), cell-free massive multiple-input multiple-output (CF-mMIMO), and {the most recent advances manifested in} open radio-access network (O-RAN). In the process, we discuss the benefits and limitations of these architectures, including the impact of limited-capacity fronthaul links, various cooperative uplink and downlink coding strategies, cross-layer optimization, and techniques to optimize the performance of DAS. Moreover, we review key enabling technologies for next-generation RAN systems, such as multi-access edge computing, network function virtualization, software-defined networking, and network slicing; in addition to some crucial radio access technologies, such as millimeter wave, massive multi-input multi-output, device-to-device communication, and massive machine-type communication. Last but not least, we discuss the major research challenges in DAS and identify several possible directions for future research.
Abstract:Next-generation communication networks are expected to exploit recent advances in data science and cutting-edge communications technologies to improve the utilization of the available communications resources. In this article, we introduce an emerging deep learning (DL) architecture, the transformer-masked autoencoder (TMAE), and discuss its potential in next-generation wireless networks. We discuss the limitations of current DL techniques in meeting the requirements of 5G and beyond 5G networks, and how the TMAE differs from the classical DL techniques can potentially address several wireless communication problems. We highlight various areas in next-generation mobile networks which can be addressed using a TMAE, including source and channel coding, estimation, and security. Furthermore, we demonstrate a case study showing how a TMAE can improve data compression performance and complexity compared to existing schemes. Finally, we discuss key challenges and open future research directions for deploying the TMAE in intelligent next-generation mobile networks.