Abstract:The banking sector faces challenges in using deep learning due to data sensitivity and regulatory constraints, but generative AI may offer a solution. Thus, this study identifies effective algorithms for generating synthetic financial transaction data and evaluates five leading models - Conditional Tabular Generative Adversarial Networks (CTGAN), DoppelGANger (DGAN), Wasserstein GAN, Financial Diffusion (FinDiff), and Tabular Variational AutoEncoders (TVAE) - across five criteria: fidelity, synthesis quality, efficiency, privacy, and graph structure. While none of the algorithms is able to replicate the real data's graph structure, each excels in specific areas: DGAN is ideal for privacy-sensitive tasks, FinDiff and TVAE excel in data replication and augmentation, and CTGAN achieves a balance across all five criteria, making it suitable for general applications with moderate privacy concerns. As a result, our findings offer valuable insights for choosing the most suitable algorithm.
Abstract:Current research on RAGs is distributed across various disciplines, and since the technology is evolving very quickly, its unit of analysis is mostly on technological innovations, rather than applications in business contexts. Thus, in this research, we aim to create a taxonomy to conceptualize a comprehensive overview of the constituting characteristics that define RAG applications, facilitating the adoption of this technology in the IS community. To the best of our knowledge, no RAG application taxonomies have been developed so far. We describe our methodology for developing the taxonomy, which includes the criteria for selecting papers, an explanation of our rationale for employing a Large Language Model (LLM)-supported approach to extract and identify initial characteristics, and a concise overview of our systematic process for conceptualizing the taxonomy. Our systematic taxonomy development process includes four iterative phases designed to refine and enhance our understanding and presentation of RAG's core dimensions. We have developed a total of five meta-dimensions and sixteen dimensions to comprehensively capture the concept of Retrieval-Augmented Generation (RAG) applications. When discussing our findings, we also detail the specific research areas and pose key research questions to guide future information system researchers as they explore the emerging topics of RAG systems.