Abstract:Currently, people with disability or difficulty to move their arms (referred to as "patients") have very limited technological solutions to efficiently address their physiological limitations. It is mainly due to two reasons: (1) the non-invasive solutions like mind-controlled prosthetic devices are typically very costly and require expensive maintenance; and (2) other solutions require costly invasive brain surgery, which is high risk to perform, expensive, and difficult to maintain. Therefore, current technological solutions are not accessible for all patients with different financial backgrounds. Toward this, we propose a low-cost technological solution called MindArm, a mechanized intelligent non-invasive neuro-driven prosthetic arm system. Our MindArm system employs a deep neural network (DNN) engine to translate brain signals into the intended prosthetic arm motion, thereby helping patients to perform many activities despite their physiological limitations. Here, our MindArm system utilizes widely accessible and low-cost surface electroencephalogram (EEG) electrodes coupled with an Open Brain Computer Interface and UDP networking for acquiring brain signals and transmitting them to the compute module for signal processing. In the compute module, we run a trained DNN model to interpret normalized micro-voltage of the brain signals, and then translate them into a prosthetic arm action via serial communication seamlessly. The experimental results on a fully working prototype demonstrate that, from the three defined actions, our MindArm system achieves positive success rates, i.e., 91\% for idle/stationary, 85\% for shake hand, and 84\% for pick-up cup. This demonstrates that our MindArm provides a novel approach for an alternate low-cost mind-controlled prosthetic devices for all patients.