Abstract:In this paper, a recently developed snapshot hyperspectral imaging (HSI) system based on Computed Tomography Imaging Spectroscopy (CTIS) is utilized to determine Brix and pH values in Sheegene 20 table grapes through Partial Least Squares Regression (PLSR) modeling. The performance of the CTIS system is compared with that of a state-of-the-art line scan HSI system by imaging 100 grapes across both platforms. Reference measurements of Brix and pH values are obtained directly using a refractometer and a pH meter, as these parameters are essential for assessing the quality of table and wine grapes. The findings indicate that the spectra captured by the CTIS camera correlate well with the reference measurements, despite the system's narrower spectral range. The CTIS camera's advantages, including its lower cost, portability, and reduced susceptibility to motion errors, highlight its potential for promising in-field applications in grape quality assessment.
Abstract:A novel method, utilizing convolutional neural networks (CNNs), is proposed to reconstruct hyperspectral cubes from computed tomography imaging spectrometer (CTIS) images. Current reconstruction algorithms are usually subject to long reconstruction times and mediocre precision in cases of a large number of spectral channels. The constructed CNNs deliver higher precision and shorter reconstruction time than a standard expectation maximization algorithm. In addition, the network can handle two different types of real-world images at the same time -- specifically ColorChecker and carrot spectral images are considered. This work paves the way toward real-time reconstruction of hyperspectral cubes from CTIS images.