Abstract:Vision-Language Models (VLMs) are now a core part of modern AI. Recent work proposed several visual jailbreak attacks using single/ holistic images. However, contemporary VLMs demonstrate strong robustness against such attacks due to extensive safety alignment through preference optimization (e.g., RLHF). In this work, we identify a new vulnerability: while VLM pretraining and instruction tuning generalize well to split-image inputs, safety alignment is typically performed only on holistic images and does not account for harmful semantics distributed across multiple image fragments. Consequently, VLMs often fail to detect and refuse harmful split-image inputs, where unsafe cues emerge only after combining images. We introduce novel split-image visual jailbreak attacks (SIVA) that exploit this misalignment. Unlike prior optimization-based attacks, which exhibit poor black-box transferability due to architectural and prior mismatches across models, our attacks evolve in progressive phases from naive splitting to an adaptive white-box attack, culminating in a black-box transfer attack. Our strongest strategy leverages a novel adversarial knowledge distillation (Adv-KD) algorithm to substantially improve cross-model transferability. Evaluations on three state-of-the-art modern VLMs and three jailbreak datasets demonstrate that our strongest attack achieves up to 60% higher transfer success than existing baselines. Lastly, we propose efficient ways to address this critical vulnerability in the current VLM safety alignment.




Abstract:This report presents our approach for the IEEE SP Cup 2025: Deepfake Face Detection in the Wild (DFWild-Cup), focusing on detecting deepfakes across diverse datasets. Our methodology employs advanced backbone models, including MaxViT, CoAtNet, and EVA-02, fine-tuned using supervised contrastive loss to enhance feature separation. These models were specifically chosen for their complementary strengths. Integration of convolution layers and strided attention in MaxViT is well-suited for detecting local features. In contrast, hybrid use of convolution and attention mechanisms in CoAtNet effectively captures multi-scale features. Robust pretraining with masked image modeling of EVA-02 excels at capturing global features. After training, we freeze the parameters of these models and train the classification heads. Finally, a majority voting ensemble is employed to combine the predictions from these models, improving robustness and generalization to unseen scenarios. The proposed system addresses the challenges of detecting deepfakes in real-world conditions and achieves a commendable accuracy of 95.83% on the validation dataset.




Abstract:As the integration of the Large Language Models (LLMs) into various applications increases, so does their susceptibility to misuse, raising significant security concerns. Numerous jailbreak attacks have been proposed to assess the security defense of LLMs. Current jailbreak attacks mainly rely on scenario camouflage, prompt obfuscation, prompt optimization, and prompt iterative optimization to conceal malicious prompts. In particular, sequential prompt chains in a single query can lead LLMs to focus on certain prompts while ignoring others, facilitating context manipulation. This paper introduces SequentialBreak, a novel jailbreak attack that exploits this vulnerability. We discuss several scenarios, not limited to examples like Question Bank, Dialog Completion, and Game Environment, where the harmful prompt is embedded within benign ones that can fool LLMs into generating harmful responses. The distinct narrative structures of these scenarios show that SequentialBreak is flexible enough to adapt to various prompt formats beyond those discussed. Extensive experiments demonstrate that SequentialBreak uses only a single query to achieve a substantial gain of attack success rate over existing baselines against both open-source and closed-source models. Through our research, we highlight the urgent need for more robust and resilient safeguards to enhance LLM security and prevent potential misuse. All the result files and website associated with this research are available in this GitHub repository: https://anonymous.4open.science/r/JailBreakAttack-4F3B/.