Abstract:The objective of this research is to optimize the eleventh iteration of You Only Look Once (YOLOv11) by developing size-specific modified versions of the architecture. These modifications involve pruning unnecessary layers and reconfiguring the main architecture of YOLOv11. Each proposed version is tailored to detect objects of specific size ranges, from small to large. To ensure proper model selection based on dataset characteristics, we introduced an object classifier program. This program identifies the most suitable modified version for a given dataset. The proposed models were evaluated on various datasets and compared with the original YOLOv11 and YOLOv8 models. The experimental results highlight significant improvements in computational resource efficiency, with the proposed models maintaining the accuracy of the original YOLOv11. In some cases, the modified versions outperformed the original model regarding detection performance. Furthermore, the proposed models demonstrated reduced model sizes and faster inference times. Models weights and the object size classifier can be found in this repository
Abstract:This paper addresses the challenge of classifying and assigning programming tasks to experts, a process that typically requires significant effort, time, and cost. To tackle this issue, a novel dataset containing a total of 4,112 programming tasks was created by extracting tasks from various websites. Web scraping techniques were employed to collect this dataset of programming problems systematically. Specific HTML tags were tracked to extract key elements of each issue, including the title, problem description, input-output, examples, problem class, and complexity score. Examples from the dataset are provided in the appendix to illustrate the variety and complexity of tasks included. The dataset's effectiveness has been evaluated and benchmarked using two approaches; the first approach involved fine-tuning the FLAN-T5 small model on the dataset, while the second approach used in-context learning (ICL) with the GPT-4o mini. The performance was assessed using standard metrics: accuracy, recall, precision, and F1-score. The results indicated that in-context learning with GPT-4o-mini outperformed the FLAN-T5 model.