Abstract:Although mechanical ventilation is a lifesaving intervention in the ICU, it has harmful side-effects, such as barotrauma and volutrauma. These harms can occur due to asynchronies. Asynchronies are defined as a mismatch between the ventilator timing and patient respiratory effort. Automatic detection of these asynchronies, and subsequent feedback, would improve lung ventilation and reduce the probability of lung damage. Neural networks to detect asynchronies provide a promising new approach but require large annotated data sets, which are difficult to obtain and require complex monitoring of inspiratory effort. In this work, we propose a model-based approach to generate a synthetic data set for machine learning and educational use by extending an existing lung model with a first-order ventilator model. The physiological nature of the derived lung model allows adaptation to various disease archetypes, resulting in a diverse data set. We generated a synthetic data set using 9 different patient archetypes, which are derived from measurements in the literature. The model and synthetic data quality have been verified by comparison with clinical data, review by a clinical expert, and an artificial intelligence model that was trained on experimental data. The evaluation showed it was possible to generate patient-ventilator waveforms including asynchronies that have the most important features of experimental patient-ventilator waveforms.
Abstract:Shear-wave elastography (SWE) permits local estimation of tissue elasticity, an important imaging marker in biomedicine. This recently-developed, advanced technique assesses the speed of a laterally-travelling shear wave after an acoustic radiation force "push" to estimate local Young's moduli in an operator-independent fashion. In this work, we show how synthetic SWE (sSWE) images can be generated based on conventional B-mode imaging through deep learning. Using side-by-side-view B-mode/SWE images collected in 50 patients with prostate cancer, we show that sSWE images with a pixel-wise mean absolute error of 4.8 kPa with regard to the original SWE can be generated. Visualization of high-level feature levels through t-Distributed Stochastic Neighbor Embedding reveals a high degree of overlap between data from different scanners. Also qualitatively, sSWE results seem generalisable to single B-mode acquisitions and other scanners. In the future, we envision sSWE as a reliable elasticity-related tissue typing strategy that is solely based on B-mode ultrasound acquisition.