Abstract:Within the last years, the classification of variable stars with Machine Learning has become a mainstream area of research. Recently, visualization of time series is attracting more attention in data science as a tool to visually help scientists to recognize significant patterns in complex dynamics. Within the Machine Learning literature, dictionary-based methods have been widely used to encode relevant parts of image data. These methods intrinsically assign a degree of importance to patches in pictures, according to their contribution in the image reconstruction. Inspired by dictionary-based techniques, we present an approach that naturally provides the visualization of salient parts in astronomical light curves, making the analogy between image patches and relevant pieces in time series. Our approach encodes the most meaningful patterns such that we can approximately reconstruct light curves by just using the encoded information. We test our method in light curves from the OGLE-III and StarLight databases. Our results show that the proposed model delivers an automatic and intuitive visualization of relevant light curve parts, such as local peaks and drops in magnitude.