Abstract:Windowing is a common technique in EEG machine learning classification and other time series tasks. However, a challenge arises when employing this technique: computational expense inhibits learning global relationships across an entire recording or set of recordings. Furthermore, the labels inherited by windows from their parent recordings may not accurately reflect the content of that window in isolation. To resolve these issues, we introduce a multi-stage model architecture, incorporating meta-learning principles tailored to time-windowed data aggregation. We further tested two distinct strategies to alleviate these issues: lengthening the window and utilizing overlapping to augment data. Our methods, when tested on the Temple University Hospital Abnormal EEG Corpus (TUAB), dramatically boosted the benchmark accuracy from 89.8 percent to 99.0 percent. This breakthrough performance surpasses prior performance projections for this dataset and paves the way for clinical applications of machine learning solutions to EEG interpretation challenges. On a broader and more varied dataset from the Temple University Hospital EEG Corpus (TUEG), we attained an accuracy of 86.7%, nearing the assumed performance ceiling set by variable inter-rater agreement on such datasets.
Abstract:A key task in clinical EEG interpretation is to classify a recording or session as normal or abnormal. In machine learning approaches to this task, recordings are typically divided into shorter windows for practical reasons, and these windows inherit the label of their parent recording. We hypothesised that window labels derived in this manner can be misleading for example, windows without evident abnormalities can be labelled `abnormal' disrupting the learning process and degrading performance. We explored two separable approaches to mitigate this problem: increasing the window length and introducing a second-stage model to arbitrate between the window-specific predictions within a recording. Evaluating these methods on the Temple University Hospital Abnormal EEG Corpus, we significantly improved state-of-the-art average accuracy from 89.8 percent to 93.3 percent. This result defies previous estimates of the upper limit for performance on this dataset and represents a major step towards clinical translation of machine learning approaches to this problem.