Abstract:Exploring and understanding the functioning of the human brain is one of the greatest challenges for current research. Neuromorphic engineering tries to address this challenge by abstracting biological mechanisms and translating them into technology. Via the abstraction process and experiments with the resulting technical system, an attempt is made to obtain information about the biological counterpart. One subsection of Neuromorphic Engineering (NE) are Spiking Neural Networks (SNN), which describe the structures of the human brain more and more closely than Artificial Neural Networks (ANN). Together with their dedicated hardware, SNNs provide a good platform for developing new algorithms for information processing. In the context of these neuromorphic hardware platforms, this paper aims to develop an interface for a digital hardware platform (SPINN-3 Development Board) to enable the use of industrial or conventional sensors and thus create new approaches for experimental research. The basis for this endeavor is a Field Programmable Gate Array (FPGA), which is placed as a gateway between the sensors and the neuromorphic hardware. Overall, the developed system provides a robust solution for a wide variety of investigations related to neuromorphic hardware and SNNs. Furthermore, the solution also offers suitable possibilities to monitor all processes within the system in order to obtain suitable measurements, which can be examined in search of meaningful results.
Abstract:In order to fully harness the potential of dielectric elastomer actu-ators (DEAs) in soft robots, advanced control methods are need-ed. An important groundwork for this is the development of a control-oriented model that can adequately describe the underly-ing dynamics of a DEA. A common feature of existing models is that always custom-made DEAs were investigated. This makes the modelling process easier, as all specifications and the struc-ture of the actuator are well known. In the case of a commercial actuator, however, only the information from the manufacturer is available and must be checked or completed during the modelling process. The aim of this paper is to explore how a commercial stacked silicone-based DEA can be modelled and how complex the model should be to properly replicate the features of the actu-ator. The static description has demonstrated the suitability of Hooke's law. In the case of dynamic description, it is shown that no viscoelastic model is needed for control-oriented modelling. However, if all features of the DEA are considered, the general-ized Kelvin-Maxwell model with three Maxwell elements shows good results, stability and computational efficiency.