Abstract:Understanding structure-property relationships of Li-ion battery cathodes is crucial for optimizing rate-performance and cycle-life resilience. However, correlating the morphology of cathode particles, such as in NMC811, and their inner grain architecture with electrode performance is challenging, particularly, due to the significant length-scale difference between grain and particle sizes. Experimentally, it is currently not feasible to image such a high number of particles with full granular detail to achieve representivity. A second challenge is that sufficiently high-resolution 3D imaging techniques remain expensive and are sparsely available at research institutions. To address these challenges, a stereological generative adversarial network (GAN)-based model fitting approach is presented that can generate representative 3D information from 2D data, enabling characterization of materials in 3D using cost-effective 2D data. Once calibrated, this multi-scale model is able to rapidly generate virtual cathode particles that are statistically similar to experimental data, and thus is suitable for virtual characterization and materials testing through numerical simulations. A large dataset of simulated particles with inner grain architecture has been made publicly available.
Abstract:The structural characterization of hetero-aggregates in 3D is of great interest, e.g., for deriving process-structure or structure-property relationships. However, since 3D imaging techniques are often difficult to perform as well as time and cost intensive, a characterization of hetero-aggregates based on 2D image data is desirable, but often non-trivial. To overcome the issues of characterizing 3D structures from 2D measurements, a method is presented that relies on machine learning combined with methods of spatial stochastic modeling, where the latter are utilized for the generation of synthetic training data. This kind of training data has the advantage that time-consuming experiments for the synthesis of differently structured materials followed by their 3D imaging can be avoided. More precisely, a parametric stochastic 3D model is presented, from which a wide spectrum of virtual hetero-aggregates can be generated. Additionally, the virtual structures are passed to a physics-based simulation tool in order to generate virtual scanning transmission electron microscopy (STEM) images. The preset parameters of the 3D model together with the simulated STEM images serve as a database for the training of convolutional neural networks, which can be used to determine the parameters of the underlying 3D model and, consequently, to predict 3D structures of hetero-aggregates from 2D STEM images. Furthermore, an error analysis is performed to evaluate the prediction power of the trained neural networks with respect to structural descriptors, e.g. the hetero-coordination number.
Abstract:Image-based computational fluid dynamics have long played an important role in leveraging knowledge and understanding of several physical phenomena. In particular, probabilistic computational methods have opened the way to modelling the complex dynamics of systems in purely random turbulent motion. In the field of structural geology, a better understanding of the deformation and stress state both within the salt and the surrounding rocks is of great interest to characterize all kinds of subsurface long-terms energy-storage systems. The objective of this research is to determine the non-linear deformation of the salt boundary over time using a parallelized, stochastic filtering approach from x-ray computed tomography (CT) image time series depicting the evolution of salt structures triggered by gravity and under differential loading. This work represents a first step towards bringing together physical modeling and advanced stochastic image processing methods where model uncertainty is taken into account.