Abstract:Glomeruli are histological structures of the kidney cortex formed by interwoven blood capillaries, and are responsible for blood filtration. Glomerular lesions impair kidney filtration capability, leading to protein loss and metabolic waste retention. An example of lesion is the glomerular hypercellularity, which is characterized by an increase in the number of cell nuclei in different areas of the glomeruli. Glomerular hypercellularity is a frequent lesion present in different kidney diseases. Automatic detection of glomerular hypercellularity would accelerate the screening of scanned histological slides for the lesion, enhancing clinical diagnosis. Having this in mind, we propose a new approach for classification of hypercellularity in human kidney images. Our proposed method introduces a novel architecture of a convolutional neural network (CNN) along with a support vector machine, achieving near perfect average results with the FIOCRUZ data set in a binary classification (lesion or normal). Our deep-based classifier outperformed the state-of-the-art results on the same data set. Additionally, classification of hypercellularity sub-lesions was also performed, considering mesangial, endocapilar and both lesions; in this multi-classification task, our proposed method just failed in 4\% of the cases. To the best of our knowledge, this is the first study on deep learning over a data set of glomerular hypercellularity images of human kidney.
Abstract:The growing use of control access systems based on face recognition shed light over the need for even more accurate systems to detect face spoofing attacks. In this paper, an extensive analysis on face spoofing detection works published in the last decade is presented. The analyzed works are categorized by their fundamental parts, i.e., descriptors and classifiers. This structured survey also brings the temporal evolution of the face spoofing detection field, as well as a comparative analysis of the works considering the most important public data sets in the field. The methodology followed in this work is particularly relevant to observe trends in the existing approaches, to discuss still opened issues, and to propose new perspectives for the future of face spoofing detection.