Abstract:Open-set 3D segmentation represents a major point of interest for multiple downstream robotics and augmented/virtual reality applications. Recent advances introduce 3D Gaussian Splatting as a computationally efficient representation of the underlying scene. They enable the rendering of novel views while achieving real-time display rates and matching the quality of computationally far more expensive methods. We present a decoupled 3D segmentation pipeline to ensure modularity and adaptability to novel 3D representations and semantic segmentation foundation models. The pipeline proposes class-agnostic masks based on a 3D reconstruction of the scene. Given the resulting class-agnostic masks, we use a class-aware 2D foundation model to add class annotations to the 3D masks. We test this pipeline with 3D Gaussian Splatting and different 2D segmentation models and achieve better performance than more tailored approaches while also significantly increasing the modularity.