Abstract:Snoring is a common disorder that affects people's social and marital lives. The annoyance caused by snoring can be partially solved with active noise control systems. In this context, the present work aims at introducing an enhanced system based on the use of a convolutional recurrent neural network for snoring activity detection and a delayless subband approach for active snoring cancellation. Thanks to several experiments conducted using real snoring signals, this work shows that the active snoring cancellation system achieves better performance when the snoring activity detection stage is turned on, demonstrating the beneficial effect of a preliminary snoring detection stage in the perspective of snoring cancellation.
Abstract:Packet loss is a major cause of voice quality degradation in VoIP transmissions with serious impact on intelligibility and user experience. This paper describes a system based on a generative adversarial approach, which aims to repair the lost fragments during the transmission of audio streams. Inspired by the powerful image-to-image translation capability of Generative Adversarial Networks (GANs), we propose bin2bin, an improved pix2pix framework to achieve the translation task from magnitude spectrograms of audio frames with lost packets, to noncorrupted speech spectrograms. In order to better maintain the structural information after spectrogram translation, this paper introduces the combination of two STFT-based loss functions, mixed with the traditional GAN objective. Furthermore, we employ a modified PatchGAN structure as discriminator and we lower the concealment time by a proper initialization of the phase reconstruction algorithm. Experimental results show that the proposed method has obvious advantages when compared with the current state-of-the-art methods, as it can better handle both high packet loss rates and large gaps.
Abstract:We performed an experimental review of current diarization systems for the conversational telephone speech (CTS) domain. In detail, we considered a total of eight different algorithms belonging to clustering-based, end-to-end neural diarization (EEND), and speech separation guided diarization (SSGD) paradigms. We studied the inference-time computational requirements and diarization accuracy on four CTS datasets with different characteristics and languages. We found that, among all methods considered, EEND-vector clustering (EEND-VC) offers the best trade-off in terms of computing requirements and performance. More in general, EEND models have been found to be lighter and faster in inference compared to clustering-based methods. However, they also require a large amount of diarization-oriented annotated data. In particular EEND-VC performance in our experiments degraded when the dataset size was reduced, whereas self-attentive EEND (SA-EEND) was less affected. We also found that SA-EEND gives less consistent results among all the datasets compared to EEND-VC, with its performance degrading on long conversations with high speech sparsity. Clustering-based diarization systems, and in particular VBx, instead have more consistent performance compared to SA-EEND but are outperformed by EEND-VC. The gap with respect to this latter is reduced when overlap-aware clustering methods are considered. SSGD is the most computationally demanding method, but it could be convenient if speech recognition has to be performed. Its performance is close to SA-EEND but degrades significantly when the training and inference data characteristics are less matched.
Abstract:Recent works show that speech separation guided diarization (SSGD) is an increasingly promising direction, mainly thanks to the recent progress in speech separation. It performs diarization by first separating the speakers and then applying voice activity detection (VAD) on each separated stream. In this work we conduct an in-depth study of SSGD in the conversational telephone speech (CTS) domain, focusing mainly on low-latency streaming diarization applications. We consider three state-of-the-art speech separation (SSep) algorithms and study their performance both in online and offline scenarios, considering non-causal and causal implementations as well as continuous SSep (CSS) windowed inference. We compare different SSGD algorithms on two widely used CTS datasets: CALLHOME and Fisher Corpus (Part 1 and 2) and evaluate both separation and diarization performance. To improve performance, a novel, causal and computationally efficient leakage removal algorithm is proposed, which significantly decreases false alarms. We also explore, for the first time, fully end-to-end SSGD integration between SSep and VAD modules. Crucially, this enables fine-tuning on real-world data for which oracle speakers sources are not available. In particular, our best model achieves 8.8% DER on CALLHOME, which outperforms the current state-of-the-art end-to-end neural diarization model, despite being trained on an order of magnitude less data and having significantly lower latency, i.e., 0.1 vs. 1 seconds. Finally, we also show that the separated signals can be readily used also for automatic speech recognition, reaching performance close to using oracle sources in some configurations.