Abstract:Electrophysiological nature of neuronal networks allows to reveal various interactions between different cell units at a very short time-scales. One of the many challenges in analyzing these signals is to retrieve the morphology and functionality of a given network. In this work we developed a computational model, based on Reservoir Computing Network (RCN) architecture, which decodes the spatio-temporal data from electro-physiological measurements of neuronal cultures and reconstructs the network structure on a macroscopic domain, representing the connectivity between neuronal units. We demonstrate that the model can predict the connectivity map of the network with higher accuracy than the common methods such as Cross-Correlation and Transfer-Entropy. In addition, we experimentally demonstrate the ability of the model to predict a network response to a specific input, such as localized stimulus.
Abstract:Microring resonators (MRRs) are a key photonic component in integrated devices, due to their small size, low insertion losses, and passive operation. While the MRRs have been established for optical filtering in wavelength-multiplexed systems, the nonlinear properties that they can exhibit give rise to new perspectives on their use. For instance, they have been recently considered for introducing optical nonlinearity in photonic reservoir computing systems. In this work, we present a detailed numerical investigation of a silicon MRR operation, in the presence of external optical feedback, in a time delay reservoir computing scheme. We demonstrate the versatility of this compact, passive device, by exploiting different operating regimes and solving computing tasks with diverse memory requirements. We show that when large memory is required, as it occurs in the Narma 10 task, the MRR nonlinearity does not play a significant role when the photodetection nonlinearity is involved, while the contribution of the external feedback is significant. On the contrary, for computing tasks such as the Mackey-Glass and the Santa Fe chaotic timeseries prediction, the MRR and the photodetection nonlinearities contribute both to efficient computation. The presence of optical feedback improves the prediction of the Mackey-Glass timeseries while plays a minor role in the Santa Fe timeseries case.