Abstract:Face recognition is a very important topic in data science and biometric security research areas. It has multiple applications in military, finance, and retail, to name a few. In this paper, the novel hypergraph Laplacian Eigenmaps will be proposed and combine with the k nearest-neighbor method and/or with the kernel ridge regression method to solve the face recognition problem. Experimental results illustrate that the accuracy of the combination of the novel hypergraph Laplacian Eigenmaps and one specific classification system is similar to the accuracy of the combination of the old symmetric normalized hypergraph Laplacian Eigenmaps method and one specific classification system.
Abstract:Face recognition is the very significant field in pattern recognition area. It has multiple applications in military and finance, to name a few. In this paper, the combination of the sparse PCA with the nearest-neighbor method (and with the kernel ridge regression method) will be proposed and will be applied to solve the face recognition problem. Experimental results illustrate that the accuracy of the combination of the sparse PCA method (using the proximal gradient method and the FISTA method) and one specific classification system may be lower than the accuracy of the combination of the PCA method and one specific classification system but sometimes the combination of the sparse PCA method (using the proximal gradient method or the FISTA method) and one specific classification system leads to better accuracy. Moreover, we recognize that the process computing the sparse PCA algorithm using the FISTA method is always faster than the process computing the sparse PCA algorithm using the proximal gradient method.
Abstract:This paper presents the novel way combining the BERT embedding method and the graph convolutional neural network. This combination is employed to solve the text classification problem. Initially, we apply the BERT embedding method to the texts (in the BBC news dataset and the IMDB movie reviews dataset) in order to transform all the texts to numerical vector. Then, the graph convolutional neural network will be applied to these numerical vectors to classify these texts into their ap-propriate classes/labels. Experiments show that the performance of the graph convolutional neural network model is better than the perfor-mances of the combination of the BERT embedding method with clas-sical machine learning models.
Abstract:To deal with irregular data structure, graph convolution neural networks have been developed by a lot of data scientists. However, data scientists just have concentrated primarily on developing deep neural network method for un-directed graph. In this paper, we will present the novel neural network method for directed hypergraph. In the other words, we will develop not only the novel directed hypergraph neural network method but also the novel directed hypergraph based semi-supervised learning method. These methods are employed to solve the node classification task. The two datasets that are used in the experiments are the cora and the citeseer datasets. Among the classic directed graph based semi-supervised learning method, the novel directed hypergraph based semi-supervised learning method, the novel directed hypergraph neural network method that are utilized to solve this node classification task, we recognize that the novel directed hypergraph neural network achieves the highest accuracies.
Abstract:Face recognition is the important field in machine learning and pattern recognition research area. It has a lot of applications in military, finance, public security, to name a few. In this paper, the combination of the tensor sparse PCA with the nearest-neighbor method (and with the kernel ridge regression method) will be proposed and applied to the face dataset. Experimental results show that the combination of the tensor sparse PCA with any classification system does not always reach the best accuracy performance measures. However, the accuracy of the combination of the sparse PCA method and one specific classification system is always better than the accuracy of the combination of the PCA method and one specific classification system and is always better than the accuracy of the classification system itself.
Abstract:Most network-based machine learning methods assume that the labels of two adjacent samples in the network are likely to be the same. However, assuming the pairwise relationship between samples is not complete. The information a group of samples that shows very similar pattern and tends to have similar labels is missed. The natural way overcoming the information loss of the above assumption is to represent the feature dataset of samples as the hypergraph. Thus, in this paper, we will present the un-normalized hypergraph p-Laplacian semi-supervised learning methods. These methods will be applied to the zoo dataset and the tiny version of 20 newsgroups dataset. Experiment results show that the accuracy performance measures of these un-normalized hypergraph p-Laplacian based semi-supervised learning methods are significantly greater than the accuracy performance measure of the un-normalized hypergraph Laplacian based semi-supervised learning method (the current state of the art method hypergraph Laplacian based semi-supervised learning method for classification problem with p=2).
Abstract:Most network-based speech recognition methods are based on the assumption that the labels of two adjacent speech samples in the network are likely to be the same. However, assuming the pairwise relationship between speech samples is not complete. The information a group of speech samples that show very similar patterns and tend to have similar labels is missed. The natural way overcoming the information loss of the above assumption is to represent the feature data of speech samples as the hypergraph. Thus, in this paper, the three un-normalized, random walk, and symmetric normalized hypergraph Laplacian based semi-supervised learning methods applied to hypergraph constructed from the feature data of speech samples in order to predict the labels of speech samples are introduced. Experiment results show that the sensitivity performance measures of these three hypergraph Laplacian based semi-supervised learning methods are greater than the sensitivity performance measures of the Hidden Markov Model method (the current state of the art method applied to speech recognition problem) and graph based semi-supervised learning methods (i.e. the current state of the art network-based method for classification problems) applied to network created from the feature data of speech samples.