Abstract:A microwave photonic short-time Fourier transform (STFT) system based on stabilized period-one (P1) nonlinear laser dynamics and stimulated Brillouin scattering (SBS) is proposed. By using an optoelectronic feedback loop, the frequency-sweep optical signal generated by the P1 nonlinear laser dynamics is stabilized, which is further used in conjunction with an optical bandpass filter implemented by stimulated Brillouin scattering (SBS) to achieve the frequency-to-time mapping of microwave signals and the final STFT. By comparing the experimental results with and without optoelectronic feedback, it is found that the time-frequency diagram of the signal under test (SUT) obtained by STFT is clearer and more regular, and the frequency of the SUT measured in each frequency-sweep period is more accurate. The mean absolute error is reduced by 50% under the optimal filter bandwidth.
Abstract:A photonic-assisted multi-functional radar system for simultaneous distance and velocity measurement and high-resolution microwave imaging is proposed and experimentally demonstrated by using a composite transmitted microwave signal of a single-chirped linearly frequency-modulated (LFM) signal and a single-tone microwave signal. In the system, the transmitted signal is generated via photonic frequency up-conversion based on a single integrated dual-polarization dual-parallel Mach-Zehnder modulator (DPol-DPMZM), whereas the echo signals scattered from the target are de-chirped to two low-frequency signals using a microwave photonic frequency mixer. By using the two low-frequency de-chirped signals, the real-time distance and radial velocity of the moving target can be measured accurately according to the round-trip time of the echo signal and its Doppler frequency shift. Compared with the previous reported distance and velocity measurement methods, where two LFM signals with opposite chirps are used, these parameters can be obtained using only a single-chirped LFM signal and a single-tone microwave signal. Meanwhile, high-resolution inverse synthetic aperture radar (ISAR) imaging can also be realized using ISAR imaging algorithms. An experiment is performed to verify the proposed multi-functional microwave photonic radar system. An up-chirped LFM signal from 8.5 to 12.5 GHz and an 8.0 GHz single-tone microwave signal are used as the transmitted signal. The results show that the absolute measurement errors of distance and radial velocity are less than 5.9 cm and 2.8 cm/s, respectively. ISAR imaging results are also demonstrated, which proves the high-resolution and real-time ISAR imaging ability of the proposed system.