Abstract:We analyze the uplink performance of a distributed massive multiple-input multiple-output (MIMO) architecture in which the remotely located access points (APs) are connected to a central processing unit via a fiber-optical fronthaul carrying a dithered and 1-bit quantized version of the received radio-frequency (RF) signal. The innovative feature of the proposed architecture is that no down-conversion is performed at the APs. This eliminates the need to equip the APs with local oscillators, which may be difficult to synchronize. Under the assumption that a constraint is imposed on the amount of data that can be exchanged across the fiber-optical fronthaul, we investigate the tradeoff between spatial oversampling, defined in terms of the total number of APs, and temporal oversampling, defined in terms of the oversampling factor selected at the central processing unit, to facilitate the recovery of the transmitted signal from 1-bit samples of the RF received signal. Using the so-called error-vector magnitude (EVM) as performance metric, we shed light on the optimal design of the dither signal, and quantify, for a given number of APs, the minimum fronthaul rate required for our proposed distributed massive MIMO architecture to outperform a standard co-located massive MIMO architecture in terms of EVM.
Abstract:We present the uplink and downlink of a time-division duplex distributed multiple-input multiple-output (D-MIMO) testbed, based on a 1-bit radio-over-fiber architecture, which is low-cost and scalable. The proposed architecture involves a central unit (CU) that is equipped with 1-bit digital-to-analog and analog-to-digital converters, operating at 10 GS/s. The CU is connected to multiple single-antenna remote radio heads (RRHs) via optical fibers, over which a binary RF waveform is transmitted. In the uplink, a binary RF waveform is generated at the RRHs by a comparator, whose inputs are the received RF signal and a suitably designed dither signal. In the downlink, a binary RF waveform is generated at the CU via bandpass sigma-delta modulation. Our measurement results show that low error-vector magnitude (EVM) can be achieved in both the uplink and the downlink, despite 1-bit sampling at the CU. Specifically, for point-to-point over-cable transmission between a single user equipment (UE) and a CU equipped with a single RRH, we report, for a 10 MBd signal using single-carrier 16QAM modulation, an EVM of 3.3% in the downlink, and of 4.5% in the uplink. We then consider a CU connected to 3 RRHs serving over the air 2 UEs, and show that, after over-the-air reciprocity calibration, a downlink zero-forcing precoder designed on the basis of uplink channel estimates at the CU, achieves an EVM of 6.4% and 10.9% at UE 1 and UE 2, respectively. Finally, we investigate the ability of the proposed architecture to support orthogonal frequency-division multiplexing (OFDM) waveforms, and its robustness against both in-band and out-of-band interference.