Abstract:The velopharyngeal (VP) valve regulates the opening between the nasal and oral cavities. This valve opens and closes through a coordinated motion of the velum and pharyngeal walls. Nasalance is an objective measure derived from the oral and nasal acoustic signals that correlate with nasality. In this work, we evaluate the degree to which the nasalance measure reflects fine-grained patterns of VP movement by comparison with simultaneously collected direct measures of VP opening using high-speed nasopharyngoscopy (HSN). We show that nasalance is significantly correlated with the HSN signal, and that both match expected patterns of nasality. We then train a temporal convolution-based speech inversion system in a speaker-independent fashion to estimate VP movement for nasality, using nasalance as the ground truth. In further experiments, we also show the importance of incorporating source features (from glottal activity) to improve nasality prediction.