Abstract:Diffractive neural networks have recently emerged as a promising framework for all-optical computing. However, these networks are typically trained for a single task, limiting their potential adoption in systems requiring multiple functionalities. Existing approaches to achieving multi-task functionality either modify the mechanical configuration of the network per task or use a different illumination wavelength or polarization state for each task. In this work, we propose a new control mechanism, which is based on the illumination's angular spectrum. Specifically, we shape the illumination using an amplitude mask that selectively controls its angular spectrum. We employ different illumination masks for achieving different network functionalities, so that the mask serves as a unique task encoder. Interestingly, we show that effective control can be achieved over a very narrow angular range, within the paraxial regime. We numerically illustrate the proposed approach by training a single diffractive network to perform multiple image-to-image translation tasks. In particular, we demonstrate translating handwritten digits into typeset digits of different values, and translating handwritten English letters into typeset numbers and typeset Greek letters, where the type of the output is determined by the illumination's angular components. As we show, the proposed framework can work under different coherence conditions, and can be combined with existing control strategies, such as different wavelengths. Our results establish the illumination angular spectrum as a powerful degree of freedom for controlling diffractive networks, enabling a scalable and versatile framework for multi-task all-optical computing.
Abstract:Diffractive neural networks hold great promise for applications requiring intensive computational processing. Considerable attention has focused on diffractive networks for either spatially coherent or spatially incoherent illumination. Here we illustrate that, as opposed to imaging systems, in diffractive networks the degree of spatial coherence has a dramatic effect. In particular, we show that when the spatial coherence length on the object is comparable to the minimal feature size preserved by the optical system, neither the incoherent nor the coherent extremes serve as acceptable approximations. Importantly, this situation is inherent to many settings involving active illumination, including reflected light microscopy, autonomous vehicles and smartphones. Following this observation, we propose a general framework for training diffractive networks for any specified degree of spatial and temporal coherence, supporting all types of linear and nonlinear layers. Using our method, we numerically optimize networks for image classification, and thoroughly investigate their performance dependence on the illumination coherence properties. We further introduce the concept of coherence-blind networks, which have enhanced resilience to changes in illumination conditions. Our findings serve as a steppingstone toward adopting all-optical neural networks in real-world applications, leveraging nothing but natural light.