Abstract:We consider the problem of synthesizing a dynamic output-feedback controller for a linear system, using solely input-output data corrupted by measurement noise. To handle input-output data, an auxiliary representation of the original system is introduced. By exploiting the structure of the auxiliary system, we design a controller that robustly stabilizes all possible systems consistent with data. Notably, we also provide a novel solution to extend the results to generic multi-input multi-output systems. The findings are illustrated by numerical examples.