Abstract:Bibliometric analysis is essential for understanding research trends, scope, and impact in urban science, especially in high-impact journals, such Nature Portfolios. However, traditional methods, relying on keyword searches and basic NLP techniques, often fail to uncover valuable insights not explicitly stated in article titles or keywords. These approaches are unable to perform semantic searches and contextual understanding, limiting their effectiveness in classifying topics and characterizing studies. In this paper, we address these limitations by leveraging Generative AI models, specifically transformers and Retrieval-Augmented Generation (RAG), to automate and enhance bibliometric analysis. We developed a technical workflow that integrates a vector database, Sentence Transformers, a Gaussian Mixture Model (GMM), Retrieval Agent, and Large Language Models (LLMs) to enable contextual search, topic ranking, and characterization of research using customized prompt templates. A pilot study analyzing 223 urban science-related articles published in Nature Communications over the past decade highlights the effectiveness of our approach in generating insightful summary statistics on the quality, scope, and characteristics of papers in high-impact journals. This study introduces a new paradigm for enhancing bibliometric analysis and knowledge retrieval in urban research, positioning an AI agent as a powerful tool for advancing research evaluation and understanding.