Università Politecnica delle Marche
Abstract:This paper describes a novel Deep Learning method for the design of IIR parametric filters for automatic audio equalization. A simple and effective neural architecture, named BiasNet, is proposed to determine the IIR equalizer parameters. An output denormalization technique is used to obtain accurate tuning of the IIR filters center frequency, quality factor and gain. All layers involved in the proposed method are shown to be differentiable, allowing backpropagation to optimize the network weights and achieve, after a number of training iterations, the optimal output. The parameters are optimized with respect to a loss function based on a spectral distance between the measured and desired magnitude response, and a regularization term used to achieve a spatialization of the acoustc scene. Two scenarios with different characteristics were considered for the experimental evaluation: a room and a car cabin. The performance of the proposed method improves over the baseline techniques and achieves an almost flat band. Moreover IIR filters provide a consistently lower computational cost during runtime with respect to FIR filters.
Abstract:One of the challenges in computational acoustics is the identification of models that can simulate and predict the physical behavior of a system generating an acoustic signal. Whenever such models are used for commercial applications an additional constraint is the time-to-market, making automation of the sound design process desirable. In previous works, a computational sound design approach has been proposed for the parameter estimation problem involving timbre matching by deep learning, which was applied to the synthesis of pipe organ tones. In this work we refine previous results by introducing the former approach in a multi-stage algorithm that also adds heuristics and a stochastic optimization method operating on objective cost functions based on psychoacoustics. The optimization method shows to be able to refine the first estimate given by the deep learning approach and substantially improve the objective metrics, with the additional benefit of reducing the sound design process time. Subjective listening tests are also conducted to gather additional insights on the results.