Abstract:Recent advances in symbolic dynamic programming (SDP) combined with the extended algebraic decision diagram (XADD) data structure have provided exact solutions for mixed discrete and continuous (hybrid) MDPs with piecewise linear dynamics and continuous actions. Since XADD-based exact solutions may grow intractably large for many problems, we propose a bounded error compression technique for XADDs that involves the solution of a constrained bilinear saddle point problem. Fortuitously, we show that given the special structure of this problem, it can be expressed as a bilevel linear programming problem and solved to optimality in finite time via constraint generation, despite having an infinite set of constraints. This solution permits the use of efficient linear program solvers for XADD compression and enables a novel class of bounded approximate SDP algorithms for hybrid MDPs that empirically offers order-of-magnitude speedups over the exact solution in exchange for a small approximation error.
Abstract:Many real-world decision-theoretic planning problems can be naturally modeled with discrete and continuous state Markov decision processes (DC-MDPs). While previous work has addressed automated decision-theoretic planning for DCMDPs, optimal solutions have only been defined so far for limited settings, e.g., DC-MDPs having hyper-rectangular piecewise linear value functions. In this work, we extend symbolic dynamic programming (SDP) techniques to provide optimal solutions for a vastly expanded class of DCMDPs. To address the inherent combinatorial aspects of SDP, we introduce the XADD - a continuous variable extension of the algebraic decision diagram (ADD) - that maintains compact representations of the exact value function. Empirically, we demonstrate an implementation of SDP with XADDs on various DC-MDPs, showing the first optimal automated solutions to DCMDPs with linear and nonlinear piecewise partitioned value functions and showing the advantages of constraint-based pruning for XADDs.