Abstract:In the Emotion Recognition in Conversation task, recent investigations have utilized attention mechanisms exploring relationships among utterances from intra- and inter-speakers for modeling emotional interaction between them. However, attributes such as speaker personality traits remain unexplored and present challenges in terms of their applicability to other tasks or compatibility with diverse model architectures. Therefore, this work introduces a novel framework named BiosERC, which investigates speaker characteristics in a conversation. By employing Large Language Models (LLMs), we extract the "biographical information" of the speaker within a conversation as supplementary knowledge injected into the model to classify emotional labels for each utterance. Our proposed method achieved state-of-the-art (SOTA) results on three famous benchmark datasets: IEMOCAP, MELD, and EmoryNLP, demonstrating the effectiveness and generalization of our model and showcasing its potential for adaptation to various conversation analysis tasks. Our source code is available at https://github.com/yingjie7/BiosERC.
Abstract:Machine Translation is one of the essential tasks in Natural Language Processing (NLP), which has massive applications in real life as well as contributing to other tasks in the NLP research community. Recently, Transformer -based methods have attracted numerous researchers in this domain and achieved state-of-the-art results in most of the pair languages. In this paper, we report an effective method using a phrase mechanism, PhraseTransformer, to improve the strong baseline model Transformer in constructing a Neural Machine Translation (NMT) system for parallel corpora Vietnamese-Chinese. Our experiments on the MT dataset of the VLSP 2022 competition achieved the BLEU score of 35.3 on Vietnamese to Chinese and 33.2 BLEU scores on Chinese to Vietnamese data. Our code is available at https://github.com/phuongnm94/PhraseTransformer.