Abstract:Existing research on music recommendation systems primarily focuses on recommending similar music, thereby often neglecting diverse and distinctive musical recordings. Musical outliers can provide valuable insights due to the inherent diversity of music itself. In this paper, we explore music outliers, investigating their potential usefulness for music discovery and recommendation systems. We argue that not all outliers should be treated as noise, as they can offer interesting perspectives and contribute to a richer understanding of an artist's work. We introduce the concept of 'Genuine' music outliers and provide a definition for them. These genuine outliers can reveal unique aspects of an artist's repertoire and hold the potential to enhance music discovery by exposing listeners to novel and diverse musical experiences.
Abstract:The high feature dimensionality is a challenge in music emotion recognition. There is no common consensus on a relation between audio features and emotion. The MER system uses all available features to recognize emotion; however, this is not an optimal solution since it contains irrelevant data acting as noise. In this paper, we introduce a feature selection approach to eliminate redundant features for MER. We created a Selected Feature Set (SFS) based on the feature selection algorithm (FSA) and benchmarked it by training with two models, Support Vector Regression (SVR) and Random Forest (RF) and comparing them against with using the Complete Feature Set (CFS). The result indicates that the performance of MER has improved for both Random Forest (RF) and Support Vector Regression (SVR) models by using SFS. We found using FSA can improve performance in all scenarios, and it has potential benefits for model efficiency and stability for MER task.