Abstract:Wireless communication has evolved significantly, with 6G offering groundbreaking capabilities, particularly for IoT. However, the integration of IoT into 6G presents new security challenges, expanding the attack surface due to vulnerabilities introduced by advanced technologies such as open RAN, terahertz (THz) communication, IRS, massive MIMO, and AI. Emerging threats like AI exploitation, virtualization risks, and evolving attacks, including data manipulation and signal interference, further complicate security efforts. As 6G standards are set to be finalized by 2030, work continues to align security measures with technological advances. However, substantial gaps remain in frameworks designed to secure integrated IoT and 6G systems. Our research addresses these challenges by utilizing tree-based machine learning algorithms to manage complex datasets and evaluate feature importance. We apply data balancing techniques to ensure fair attack representation and use SHAP and LIME to improve model transparency. By aligning feature importance with XAI methods and cross-validating for consistency, we boost model accuracy and enhance IoT security within the 6G ecosystem.
Abstract:It is critical to secure the Industrial Internet of Things (IIoT) devices because of potentially devastating consequences in case of an attack. Machine learning and big data analytics are the two powerful leverages for analyzing and securing the Internet of Things (IoT) technology. By extension, these techniques can help improve the security of the IIoT systems as well. In this paper, we first present common IIoT protocols and their associated vulnerabilities. Then, we run a cyber-vulnerability assessment and discuss the utilization of machine learning in countering these susceptibilities. Following that, a literature review of the available intrusion detection solutions using machine learning models is presented. Finally, we discuss our case study, which includes details of a real-world testbed that we have built to conduct cyber-attacks and to design an intrusion detection system (IDS). We deploy backdoor, command injection, and Structured Query Language (SQL) injection attacks against the system and demonstrate how a machine learning based anomaly detection system can perform well in detecting these attacks. We have evaluated the performance through representative metrics to have a fair point of view on the effectiveness of the methods.