Abstract:Real-Time Strategy (RTS) game unit generation is an unexplored area of Procedural Content Generation (PCG) research, which leaves the question of how to automatically generate interesting and balanced units unanswered. Creating unique and balanced units can be a difficult task when designing an RTS game, even for humans. Having an automated method of designing units could help developers speed up the creation process as well as find new ideas. In this work we propose a method of generating balanced and useful RTS units. We draw on Search-Based PCG and a fitness function based on Monte Carlo Tree Search (MCTS). We present ten units generated by our system designed to be used in the game microRTS, as well as results demonstrating that these units are unique, useful, and balanced.
Abstract:Machine learning has been a popular tool in many different fields, including procedural content generation. However, procedural content generation via machine learning (PCGML) approaches can struggle with controllability and coherence. In this paper, we attempt to address these problems by learning to generate human-like paths, and then generating levels based on these paths. We extract player path data from gameplay video, train an LSTM to generate new paths based on this data, and then generate game levels based on this path data. We demonstrate that our approach leads to more coherent levels for the game Lode Runner in comparison to an existing PCGML approach.