Abstract:Throughout many fields, practitioners often rely on differential equations to model systems. Yet, for many applications, the theoretical derivation of such equations and/or accurate resolution of their solutions may be intractable. Instead, recently developed methods, including those based on parameter estimation, operator subset selection, and neural networks, allow for the data-driven discovery of both ordinary and partial differential equations (PDEs), on a spectrum of interpretability. The success of these strategies is often contingent upon the correct identification of representative equations from noisy observations of state variables and, as importantly and intertwined with that, the mathematical strategies utilized to enforce those equations. Specifically, the latter has been commonly addressed via unconstrained optimization strategies. Representing the PDE as a neural network, we propose to discover the PDE by solving a constrained optimization problem and using an intermediate state representation similar to a Physics-Informed Neural Network (PINN). The objective function of this constrained optimization problem promotes matching the data, while the constraints require that the PDE is satisfied at several spatial collocation points. We present a penalty method and a widely used trust-region barrier method to solve this constrained optimization problem, and we compare these methods on numerical examples. Our results on the Burgers' and the Korteweg-De Vreis equations demonstrate that the latter constrained method outperforms the penalty method, particularly for higher noise levels or fewer collocation points. For both methods, we solve these discovered neural network PDEs with classical methods, such as finite difference methods, as opposed to PINNs-type methods relying on automatic differentiation. We briefly highlight other small, yet crucial, implementation details.
Abstract:A new, machine learning-based approach for automatically generating 3D digital geometries of woven composite textiles is proposed to overcome the limitations of existing analytical descriptions and segmentation methods. In this approach, panoptic segmentation is leveraged to produce instance segmented semantic masks from X-ray computed tomography (CT) images. This effort represents the first deep learning based automated process for segmenting unique yarn instances in a woven composite textile. Furthermore, it improves on existing methods by providing instance-level segmentation on low contrast CT datasets. Frame-to-frame instance tracking is accomplished via an intersection-over-union (IoU) approach adopted from video panoptic segmentation for assembling a 3D geometric model. A corrective recognition algorithm is developed to improve the recognition quality (RQ). The panoptic quality (PQ) metric is adopted to provide a new universal evaluation metric for reconstructed woven composite textiles. It is found that the panoptic segmentation network generalizes well to new CT images that are similar to the training set but does not extrapolate well to CT images of differing geometry, texture, and contrast. The utility of this approach is demonstrated by capturing yarn flow directions, contact regions between individual yarns, and the spatially varying cross-sectional areas of the yarns.