Abstract:Traditional defect classification approaches are facing with two barriers. (1) Insufficient training data and unstable data quality. Collecting sufficient defective sample is expensive and time-costing, consequently leading to dataset variance. It introduces the difficulty on recognition and learning. (2) Over-dependence on visual modality. When the image pattern and texture is monotonic for all defect classes in a given dataset, the performance of conventional AOI system cannot be guaranteed. In scenarios where image quality is compromised due to mechanical failures or when defect information is inherently difficult to discern, the performance of deep models cannot be guaranteed. A main question is, "how to solve those two problems when they occur at the same time?" The feasible strategy is to explore another feature within dataset and combine an eminent vision-language model (VLM) and Large-Language model (LLM) with their astonishing zero-shot capability. In this work, we propose the special ASE dataset, including rich data description recorded on image, for defect classification, but the defect feature is uneasy to learn directly. Secondly, We present the prompting for VLM-LLM against defect classification with the proposed ASE dataset to activate extra-modality feature from images to enhance performance. Then, We design the novel progressive feature alignment (PFA) block to refine image-text feature to alleviate the difficulty of alignment under few-shot scenario. Finally, the proposed Cross-modality attention fusion (CMAF) module can effectively fuse different modality feature. Experiment results have demonstrated our method's effectiveness over several defect classification methods for the ASE dataset.
Abstract:Automatic optical inspection (AOI) plays a pivotal role in the manufacturing process, predominantly leveraging high-resolution imaging instruments for scanning purposes. It detects anomalies by analyzing image textures or patterns, making it an essential tool in industrial manufacturing and quality control. Despite its importance, the deployment of models for AOI often faces challenges. These include limited sample sizes, which hinder effective feature learning, variations among source domains, and sensitivities to changes in lighting and camera positions during imaging. These factors collectively compromise the accuracy of model predictions. Traditional AOI often fails to capitalize on the rich mechanism-parameter information from machines or inside images, including statistical parameters, which typically benefit AOI classification. To address this, we introduce an external modality-guided data mining framework, primarily rooted in optical character recognition (OCR), to extract statistical features from images as a second modality to enhance performance, termed OANet (Ocr-Aoi-Net). A key aspect of our approach is the alignment of external modality features, extracted using a single modality-aware model, with image features encoded by a convolutional neural network. This synergy enables a more refined fusion of semantic representations from different modalities. We further introduce feature refinement and a gating function in our OANet to optimize the combination of these features, enhancing inference and decision-making capabilities. Experimental outcomes show that our methodology considerably boosts the recall rate of the defect detection model and maintains high robustness even in challenging scenarios.