Abstract:The data-hungry approach of supervised classification drives the interest of the researchers toward unsupervised approaches, especially for problems such as medical image segmentation, where labeled data are difficult to get. Motivated by the recent success of Vision transformers (ViT) in various computer vision tasks, we propose an unsupervised segmentation framework with a pre-trained ViT. Moreover, by harnessing the graph structure inherent within the image, the proposed method achieves a notable performance in segmentation, especially in medical images. We further introduce a modularity-based loss function coupled with an Auto-Regressive Moving Average (ARMA) filter to capture the inherent graph topology within the image. Finally, we observe that employing Scaled Exponential Linear Unit (SELU) and SILU (Swish) activation functions within the proposed Graph Neural Network (GNN) architecture enhances the performance of segmentation. The proposed method provides state-of-the-art performance (even comparable to supervised methods) on benchmark image segmentation datasets such as ECSSD, DUTS, and CUB, as well as challenging medical image segmentation datasets such as KVASIR, CVC-ClinicDB, ISIC-2018. The github repository of the code is available on \url{https://github.com/ksgr5566/UnSeGArmaNet}.
Abstract:Image segmentation, the process of partitioning an image into meaningful regions, plays a pivotal role in computer vision and medical imaging applications. Unsupervised segmentation, particularly in the absence of labeled data, remains a challenging task due to the inter-class similarity and variations in intensity and resolution. In this study, we extract high-level features of the input image using pretrained vision transformer. Subsequently, the proposed method leverages the underlying graph structures of the images, seeking to discover and delineate meaningful boundaries using graph neural networks and modularity based optimization criteria without relying on pre-labeled training data. Experimental results on benchmark datasets demonstrate the effectiveness and versatility of the proposed approach, showcasing competitive performance compared to the state-of-the-art unsupervised segmentation methods. This research contributes to the broader field of unsupervised medical imaging and computer vision by presenting an innovative methodology for image segmentation that aligns with real-world challenges. The proposed method holds promise for diverse applications, including medical imaging, remote sensing, and object recognition, where labeled data may be scarce or unavailable. The github repository of the code is available on [https://github.com/ksgr5566/unseggnet]