Abstract:Fuzzy systems concern fundamental methodology to represent and process uncertainty and imprecision in the linguistic information. The fuzzy systems that use fuzzy rules to represent the domain knowledge of the problem are known as Fuzzy Rule Base Systems (FRBS). On the other hand image segmentation and subsequent extraction from a noise-affected background, with the help of various soft computing methods, are relatively new and quite popular due to various reasons. These methods include various Artificial Neural Network (ANN) models (primarily supervised in nature), Genetic Algorithm (GA) based techniques, intensity histogram based methods etc. providing an extraction solution working in unsupervised mode happens to be even more interesting problem. Literature suggests that effort in this respect appears to be quite rudimentary. In the present article, we propose a fuzzy rule guided novel technique that is functional devoid of any external intervention during execution. Experimental results suggest that this approach is an efficient one in comparison to different other techniques extensively addressed in literature. In order to justify the supremacy of performance of our proposed technique in respect of its competitors, we take recourse to effective metrics like Mean Squared Error (MSE), Mean Absolute Error (MAE), Peak Signal to Noise Ratio (PSNR).
Abstract:In the recent advancement of multimedia technologies, it becomes a major concern of detecting visual attention regions in the field of image processing. The popularity of the terminal devices in a heterogeneous environment of the multimedia technology gives us enough scope for the betterment of image visualization. Although there exist numerous methods, feature based image extraction becomes a popular one in the field of image processing. The objective of image segmentation is the domain-independent partition of the image into a set of regions, which are visually distinct and uniform with respect to some property, such as grey level, texture or colour. Segmentation and subsequent extraction can be considered the first step and key issue in object recognition, scene understanding and image analysis. Its application area encompasses mobile devices, industrial quality control, medical appliances, robot navigation, geophysical exploration, military applications, etc. In all these areas, the quality of the final results depends largely on the quality of the preprocessing work. Most of the times, acquiring spurious-free preprocessing data requires a lot of application cum mathematical intensive background works. We propose a feature based fuzzy rule guided novel technique that is functionally devoid of any external intervention during execution. Experimental results suggest that this approach is an efficient one in comparison to different other techniques extensively addressed in literature. In order to justify the supremacy of performance of our proposed technique in respect of its competitors, we take recourse to effective metrics like Mean Squared Error (MSE), Mean Absolute Error (MAE) and Peak Signal to Noise Ratio (PSNR).