Abstract:The deployment of Federated Learning (FL) for clinical dermatology is hindered by the competing requirements of protecting patient privacy and preserving diagnostic features. Traditional de-identification methods often degrade pathological fidelity, while standard generative editing techniques rely on computationally intensive inversion processes unsuitable for resource-constrained edge devices. We propose a framework for identity-agnostic pathology preservation that serves as a client-side privacy-preserving utility. By leveraging inversion-free Rectified Flow Transformers (FlowEdit), the system performs high-fidelity identity transformation in near real-time (less than 20s), facilitating local deployment on clinical nodes. We introduce a "Segment-by-Synthesis" mechanism that generates counterfactual healthy and pathological twin pairs locally. This enables the extraction of differential erythema masks that are decoupled from biometric markers and semantic artifacts (e.g. jewelry). Pilot validation on high-resolution clinical samples demonstrates an Intersection over Union (IoU) stability greater than 0.67 across synthetic identities. By generating privacy-compliant synthetic surrogates at the edge, this framework mitigates the risk of gradient leakage at the source, providing a secure pathway for high-precision skin image analysis in federated environments.




Abstract:Players and ball detection are among the first required steps on a football analytics platform. Until recently, the existing open datasets on which the evaluations of most models were based, were not sufficient. In this work, we point out their weaknesses, and with the advent of the SoccerNet v3, we propose and deliver to the community an edited part of its dataset, in YOLO normalized annotation format for training and evaluation. The code of the methods and metrics are provided so that they can be used as a benchmark in future comparisons. The recent YOLO8n model proves better than FootAndBall in long-shot real-time detection of the ball and players on football fields.