Abstract:We investigate how well a physics-based simulator can replicate a real wheel loader performing bucket filling in a pile of soil. The comparison is made using field test time series of the vehicle motion and actuation forces, loaded mass, and total work. The vehicle was modeled as a rigid multibody system with frictional contacts, driveline, and linear actuators. For the soil, we tested discrete element models of different resolutions, with and without multiscale acceleration. The spatio-temporal resolution ranged between 50-400 mm and 2-500 ms, and the computational speed was between 1/10,000 to 5 times faster than real-time. The simulation-to-reality gap was found to be around 10% and exhibited a weak dependence on the level of fidelity, e.g., compatible with real-time simulation. Furthermore, the sensitivity of an optimized force feedback controller under transfer between different simulation domains was investigated. The domain bias was observed to cause a performance reduction of 5% despite the domain gap being about 15%.
Abstract:Autonomous wheel loading involves selecting actions that maximize the total performance over many repetitions. The actions should be well adapted to the current state of the pile and its future states. Selecting the best actions is difficult since the pile states are consequences of previous actions and thus are highly unknown. To aid the selection of actions, this paper investigates data-driven models to predict the loaded mass, time, work, and resulting pile state of a loading action given the initial pile state. Deep neural networks were trained on data using over 10,000 simulations to an accuracy of 91-97,% with the pile state represented either by a heightmap or by its slope and curvature. The net outcome of sequential loading actions is predicted by repeating the model inference at five milliseconds per loading. As errors accumulate during the inferences, long-horizon predictions need to be combined with a physics-based model.