Abstract:In recent years, various services have been provided through high-speed and high-capacity wireless networks on mobile communication devices, necessitating stable communication regardless of indoor or outdoor environments. To achieve stable communication, it is essential to implement proactive measures, such as switching to an alternative path and ensuring data buffering before the communication quality becomes unstable. The technology of Wireless Link Quality Estimation (WLQE), which predicts the communication quality of wireless networks in advance, plays a crucial role in this context. In this paper, we propose a novel WLQE model for estimating the communication quality of wireless networks by leveraging sequential information. Our proposed method is based on Long Short-Term Memory (LSTM), enabling highly accurate estimation by considering the sequential information of link quality. We conducted a comparative evaluation with the conventional model, stacked autoencoder-based link quality estimator (LQE-SAE), using a dataset recorded in real-world environmental conditions. Our LSTM-based LQE model demonstrates its superiority, achieving a 4.0% higher accuracy and a 4.6% higher macro-F1 score than the LQE-SAE model in the evaluation.
Abstract:A graph is a very common and powerful data structure used for modeling communication and social networks. Models that generate graphs with arbitrary features are important basic technologies in repeated simulations of networks and prediction of topology changes. Although existing generative models for graphs are useful for providing graphs similar to real-world graphs, graph generation models with tunable features have been less explored in the field. Previously, we have proposed GraphTune, a generative model for graphs that continuously tune specific graph features of generated graphs while maintaining most of the features of a given graph dataset. However, the tuning accuracy of graph features in GraphTune has not been sufficient for practical applications. In this paper, we propose a method to improve the accuracy of GraphTune by adding a new mechanism to feed back errors of graph features of generated graphs and by training them alternately and independently. Experiments on a real-world graph dataset showed that the features in the generated graphs are accurately tuned compared with conventional models.
Abstract:Generative models for graphs have been actively studied for decades, and they have a wide range of applications. Recently, learning-based graph generation that reproduces real-world graphs has gradually attracted the attention of many researchers. Several generative models that utilize modern machine learning technologies have been proposed, though a conditional generation of general graphs is less explored in the field. In this paper, we propose a generative model that allows us to tune a value of a global-level structural feature as a condition. Our model called GraphTune enables to tune a value of any structural feature of generated graphs using Long Short Term Memory (LSTM) and Conditional Variational AutoEncoder (CVAE). We performed comparative evaluations of GraphTune and conventional models with a real graph dataset. The evaluations show that GraphTune enables to clearly tune a value of a global-level structural feature compared to the conventional models.
Abstract:With the development of graph applications, generative models for graphs have been more crucial. Classically, stochastic models that generate graphs with a pre-defined probability of edges and nodes have been studied. Recently, some models that reproduce the structural features of graphs by learning from actual graph data using machine learning have been studied. However, in these conventional studies based on machine learning, structural features of graphs can be learned from data, but it is not possible to tune features and generate graphs with specific features. In this paper, we propose a generative model that can tune specific features, while learning structural features of a graph from data. With a dataset of graphs with various features generated by a stochastic model, we confirm that our model can generate a graph with specific features.